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ABSTRACT The classical algorithms require order n ~ operations to compute the first n terms in the reversion of 
a power series or the composition of two series, and order nelog n operations if  the fast Founer  transform is used 
for power series multiplication In this paper we show that the composition and reversion problems are equivalent 
(up to constant factors), and we give algorithms which require only order (n log n) ~/2 operations In many cases 
of practical importance only order n log n operations are required, these include certain special functions of 
power series and power series solution of certain differential equations Applications to root-finding methods 
which use inverse mterpolauon and to queuemg theory are described, some results on multivariate power series 
are stated, and several open questions are mentioned 
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1. Introduction 

We are mterested m the complexity of algorithms for mampulatlng formal power series. 
For example, such algorithms may compute the first n terms in the product, quotient, or 
composition of  two gwen power series. These problems arise in combmatorics and analysis 
of algorithms, where the desired power series is a generating function, as well as in 
numerical analysis. See, for example, Knuth [26], Ferguson, Nielsen, and Cook [14], 
Riordan [35], Gilbert [18], Nwen [31], Jackson and Reilly [25], Levy and Lessman [30], 
Norman [32], and Henrici [20, 21]. 

Let ~ be the integral domain of  formal power series P(s) = po + p~s + p2s 2 + over 
some field K "Formal" means that we are not concerned with questions of  convergence. 
If F is a set of  indetermmates over K, and E is a finite subset of  the extension field K(F), 
then L ( E  mod F) denotes the number of  operations necessary to compute E, starting from 
K U F and working in K(F). Informally, L ( E  rood F) is the number of  operations required 
to compute E, given F. 

If A, B E @ and C is the formal product of  A and B, we define M(n) = L(¢o . . . . .  cn mod 
a0 . . . . .  an, b0 . . . . .  b,,) Informally, M(n) is the number of  operations required to compute the 
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first n + 1 coefficients in the product of  two power series. The classical algorithm gives 
M(n) = O(n2), but if the field K is capable of  supporting the fast Fourier transform (FFT), 
then M(n) = O(n log n) (see, e.g. Knuth [26] and Borodin and Munro [5]). 

Let P, Q E ~ ,  po = 0. The composition of Q and P is the formal power series R such 
that R(s) = Q(P(s)) is a formal identity. The composition problem is to compute r0 . . . . .  r ,  
given pl  . . . . .  pn and q0 . . . . .  q,. We define COMP(n) = L(ro . . . . .  rn mod pt . . . . .  p, ,  
qo . . . . .  q,), so COMP(n) is the number of  operations required to solve the composmon 
problem. 

The functional mverse or reverswn of P is the power series V = p(-l) such that P(V(s)) 
= s or V(P(s)) = s is a formal identity. The reversion problem Is to compute vl . . . . .  vn given 
pl . . . .  pn. It is clear that the problem can be viewed as that of  computing the derivatives 
of  the inverse function (see, e.g. Traub [38, App. B]). We define REV(n) = L(v~ . . . . .  vn mod 
pl . . . . .  pn). 

The classical algorithms for both the composition and reversion problems reqmre order 
n 3 operations (see, e.g. Knuth [26]), or order n21og n operations ff the FFT is used for 
polynomial multiplication as pointed out in Kung and Traub [28, §4]. In fact the classical 
algorithms give COMP(n) = O(nM(n)) and REV(n) = O(nM(n)). In Section 2 we show 
that COMP(n) -- O((n log n)l/2M(n)). We also give an O(x/n • max(M(n), N(~/n))) algorithm 
where N ( j )  is the number of  operations required to multiply two j × j matrices. This 
algorithm is faster than both the O((n log n)I/2M(n)) algorithm and the classical algorithm 
when the polynomial multiplication algorithm to be used imphes that M(n) has order at 
least N(~/n)/~/( log n) (e.g. when M(n) ~ cn 2 for some constant c) In Section 3 we show 
that the reversion problem can be solved by Newton's method and composmon, so REV(n) 
= O((n log n)l/2M(n)) also. 

In Section 4 we show that COMP(n) = O(REV(n)) and REV(n) = O(COMP(n)), so the 
composition and reversion problems are essentially eqmvalent. Thus, in attempting to 
obtain improved upper or lower bounds one can work with either the composmon problem 
or the reversion problem. 

In Section 5 we show that the composition Q(P(s)) may be computed m O(M(n)) 
operations if Q satisfies a suitable differential equation. For example, Q could be a Bessel 
function or a hypergeometnc function. We also study the complexity of  computing the 
formal series solution of  certain first-order differential equaUons. In Section 6 we mention 
several other problems for which O(M(n)) algorithms exist, and give an application to the 
theory of  root-finding methods. Most of  this paper is restricted to power series m one 
variable, but the methods extend to dense power series in several variables. Some of  our 
results on multivariate cases are stated in Section 7. The considerations for sparse power 
series and polynomials m several variables are rather different; see Hemdel [19] and 
Horowitz [23, 24]. 

In this paper we analyze algorithms under the assumption that all coefficient computa- 
tions are done m a finite field or in finite-precision floating-point arithmetic. An analysis 
dealing with varmble-precision coefficients is yet to be performed. 

Some of  the results of  this paper were announced in Brent and Kung [9]. 
Some Regularity Condttions. Let Z + be the set of  all nonnegative integers and let G: Z + 
Z ÷ be a nondecreasmg function. We say that G satisfies Condttion A if, for some a, fi 

(0, 1), G([an]) _< fiG(n) for all sufficiently large n. We say that G satisfies Cond#ion B 
if, for some a' , /3 '  ~ (0, 1), G([a'nJ) _> fi'G(n) for all sufficiently large n. For example, ff G 
is nondecreasing and CxnYlog~n _< G(n) _< C2nYlo~n for positive constants ~, C1, C2, and any 
constant ~, then G satisfies Conditions A and B. 

LEMMA 1.1. I f  G satisfies Condition A and p ~ (0, 1), then 

~ l ' p ' n l )  = O(G(n)), (1.1) 

where the sum is taken over all integers j _> 0 such that pJn _> 1. 
PROOF. It is easy to show that ~G([pJn])/G(n) is bounded by a convergent geometric 

series for all sufficiently large n. See Brent [7, Lemma 3.4] for detads. []  
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LEMMA 1.2. I f  G sattsfies Condttion B and y > 1, then 

G(Lynj) = O(G(n)). (1.2) 

PROOF. There  ex is t s j  such that a'J7 _< 1. Thus, for all suff ioent ly  large n, 

G(t'mJ) -< (l/fi ' )G(tdyynJ) <- _< ( l / f l ' yG(n ) .  E] 

We say that G satisfies Condmon A~ If G satisfies Conditwn A with 1 > a -> fl > 0. 
Clearly Condi t ion  As is stronger than  Condi t ion  A. For  example, if G(n) = [n~]H(n) for 
some constant  6 >_ 1 and  some nondecreasmng funcUon H . Z  + ~ Z ÷, then G satisfies 
Condi t ion  AM. 

LEMMA 1.3. I f  G satisfies Condition As and p E (0, 1), then 

~p-:G([p:n]) = O((log n)G(n)). (1.3) 

where the sum ts taken over all integersj >_ 0 such that p:n .~ I. 
PROOF. Assume n Is sufficiently large. Since G([an'[) <_ fiG(n) <_ aG(n), 

G([a°n]) _< G([at"Jn]) _< at°JG(n) < ( l /a)a°G(n)  

for any real o _> O. Let y = log,p. Then  for a l l j  _> O, 

G(F0'nq) = G([a~Jnq) -< (l /a)ar~G(n) = (1/a)pJG(n), 

and  the result follows immediately.  E] 
We assume throughout the paper that M satisfies Condition As. Similar  condit ions are 

usual ly assumed, either explicitly (see, e.g. Aho, Hopcroft, and  U l l m a n  [2, p. 280] and  
Fischer and  Stockmeyer [17]) or imphclt ly (see, e.g. Borodin [4]). We shall also assume 
that C O M P  and  REV satisfy Condi t ions  A and  B, respectively One  should note, however, 
that what we really need in this paper  are the consequences of  these conditions,  namely,  
the properttes (1.1), (1.2), and  (1.3) 

Notatton. s and  t denote free variables or indetermlnates  over K. Forma l  power series 
over K are denoted by upper-case letters, and  the coefficients in the power series by 
corresponding lower-case letters, e.g. P(s) = po + pls + • + p~s n + . The formal  
derivative of  P is P'(s) = px + 2p2s + .. , and  the formal mtegral  of  P is .f~ P(t)dt = pos 
+ V2pls 2 + . . .  For  any  positive integer k, P(s) mod s k denotes the finite series consisting 
of  all terms of  P(s) of  degree less than  k. To compute P(s) mod s k means  to compute  
po, . .  , ph-l.  By the notat ion Q(s) = e(s) (mod sk), we mean  (e(s) - Q(s)) mod s k = 0, Le. 
power series P(s) and  Q(s) agree in their terms of  degree less than k. Where  necessary we 
assume that the characteristic of K is zero or sufficiently large. 

2. Fast Algortthms fo r  Compositwn 

Let P(s) = p~s + + pns ~ and Q(t) = qo + + q~t ~ be given. In  this section we give two 
algorithms for comput ing the first n + 1 coefficients, r0, ... , r~, in the series R(s) = 
Q(P(s)). 

2.1 THE FroST ALGORITHM. The algori thm is based on  the following grouping of  
terms of  Q(t). 

Q(t) = Qo(t) + Ql(t)t k + Q2(t)(tk) 2 + + Qk-l(t)(tk) k-l, 

where k = [x/(n + 1)] and  Q,(t) = ~z01 q,k+~t j, t = 0 . . . .  k - 1 (assume qz = 0 for l > n). 
A similar idea was used by Paterson and  Stockmeyer [33]. 

ALGORITHM 2 I 

1. Compute P'(s), l ~ 2 ..... k. 

2 Let T(s) ffi Pk(s) mod s ~+~ Compute T'(s), l = 2, , k - 1 

3 Compute Q,(P(s)), i = 0 . . . .  k - 1, by using the results of step ! 

4 Compute Q,(P(s))T'(s), l = 1, , k - 1, by using the results of steps 2 and 3 

5 Compute ~,k2d Q,(P(s))T'(s) by using the result of step 4 
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Note that during the computation we always truncate terms of  degree higher than n. It 
is easy to see that steps 1, 2, 4, and 5 each can be done in O(kM(n))  = O(~/nM(n))  
operations. In the following we examine step 3. Let 

( P ( s ) y  = ~ p~J)s t rood s ~+1, j = 0 . . . . .  k. 
l -0 

(Note that all p~J~ are available after step 1.) Then 

k-1 n 

Q,(V(s)) = X q,*+J X P~ J~sl (moO s ~+1) 
J=0 l--0 

= q,~+~pJl~ s I (mod s~+l). 
1=0 \ j r 0  

Step 3 amounts to computing ~ 2 d  q,k+wt- -~J~ for l = 0, . . . . . .  , n, t = 0, , k - 1, given the q,k+j 
and p~J). The computatton may be viewed as the following matrix multiphcation between 
an (n + 1) × k and a k × k matrix: 

This can clearly be done by performing [(n + 1)/k] matrix multiplications between k X k 
matrices. Define 

N ( j )  = number of  operaUons needed to multiply two]  x j matrices. 

Then step 3 takes O((n /k )N(k ) )  or O(x /nN(x /n ) )  operations. Therefore Algorithm 2.1 
establishes the following: 

THEOREM 2.1 C O M P ( n )  -- O ( x / n . m a x ( g ( n ) ,  N(x/n))) .  
2.2 THE SECOND ALGORITHM. The second algorithm is based on a formal Taylor 

expansion of  Q. Write P(s) = Pro(S) + P,(s), where Pro(s) = p ls  + "'" + p ~ m  and P,(s)  = 
pm+xs ra+l + pm+2S m+2 + " for some m < n. (The value o f  m will be determined later.) It can 
be shown by inducuon that the following Taylor expansion holds formally: 

Q(P) -- Q(Pm + er) = Q(Pm) + Q'(Pm)P, + ½Q"(Pm)(P,)  2 + . . . .  

Let l = In~m]. Since the degree o f  any term in (Pr) TM is at least n + 1 for any i > 0, 

Q(e(s))  = Q(e~(s))  + Q'(em(s)) .er(s)  + ... + (I/I!)Q~>(Pm(s)).P~(s) (rood s"+l). 

This equality gives us the following algorithm for computing the first n + 1 coefficients in 
the series R(s) -- Q(P(s)): 
A L G O R I T H M  2 2 

!. Compu te  Q(P,~(s)) mod s "+~. 

2. Compu te  Q'(P=(s)), Q"(Pm(s)) . . . . .  Q°>(Pm(s)) m o d  s n+l 

3. Compute  Pr(s), P~(s), , P~(s) rood s n+l 

4. Compute  (I/t!)Q~°(Pm(s)) P~(s) m o d  s ~+1 for i = 1, , I 

5. Sum the result obta ined  f rom step 4. 

LEMMA 2.1. I f  P(s) = pls  + "'" +pros '~, Q(t) = qo + "" + qjt ~ with m , j  < n and i f  R(s) 
= Q(P(s)) = ro + r~s + .-, then 

L(ro . . . . .  rn mod  pl  . . . . .  pm, qo . . . . .  qj) = O(( jm/n) ( log  n)M(n)).  

PROOF. We may assume that j is a power of  2. Write Q(P) = Q~(P) + psi2. Qz(P), 
where Q1 and Q2 are polynomials of  degree j /2.  This relation gives us a recursive procedure 
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for computing Q(P). During the computation we always truncate terms of degree higher 
than n. Note that deg PJ <_ jm  and deg Q(P(s)) _< jm  when deg Q = j. Assume that T( j )  
operations are needed to compute both PJ/2mod s "+~ and Q(P) mod s "+1 with deg Q = j. 
Then by the recursive procedure, we have 

T( j )  _< 2T(j /2)  + O(M(min(jm, n))). 

Let r be the largest integer k such tha t jm/2  ~ _> n. We can assume r >_ 0. We have 

T ( j )  = O(M(n) + 2M(n) + ... + 2rM(n)) + 2r+lT(j/2 r+l) 
_< O(( jm/n)M(n))  + (2jm/n)T(j/2~+l).  

Since j m / 2  r+x < n, 

T ( j /2  ~+~) = O(M(jm/2  r+x) + 2 g ( j m / 2  ~+2) + ... ) 
= O(M(n) + 2M([n/2]) + 4M([n/4]) + ) 
= O((log n)M(n)) 

by Lemma 1.3. Hence T( j )  = O(( jm/n)( log n)M(n)). Q 
LEMMA 2.2. Let U(s) = P(s)/Q(s) with qo # O. Then 

L(uo . . . . .  u, mod po . . . . .  p,, qo . . . . .  q,) = O(M(n)). 

PROOF. Use a Newton-like method as in Kung [27]. (See also Sieveking [36].) [3 
LEMMA 2.3. Let P(s) -~ p~s + p2s 2 + .. , Q(t) -- qo + qat + " , and let Q'(t) = ql + 

2qzt + "", the formal derivative of  Q(t) with respect to t. I f  R(s) -- Q(P(s)) and D(s) = 
Q'(P(s)), then 

L(do . . . . .  d, rood rx . . . . .  r,+l, pl . . . . .  p,+l) = O(M(n)). 

PROOV. By the chain rule, R'(s) -- Q'(P(s)).P'(s). Hence D(s) -- R'(s)/P'(s), and the 
result follows from Lemma 2.2. D 

By Lemma 2.1, step 1 of Algorithm 2.2 can be done in T1 = O(m(log n)M(n)) operations. 
By Lemma 2.3, step 2 of Algorithm 2.2 can be done in T2 = O(lM(n)) = O((n/m)M(n)) 
operations, since Ql')(Pm(s)), i = 1 . . . . .  l, can be computed successively and each of 
them takes O(M(n)) operations. It is easy to check that steps 3, 4, and 5 can all be done in 
O(T2) operations. Hence the total number of operaUons needed by Algorithm 2.2 is 
O(T~ + T2). Choose m ~ (n/log n) ~/2. Then O(T~ + T2) = O((n log n)l/2M(n)). We have 
shown the following: 

THEOREM 2.2. COMP(n) = O((n log n)l/2M(n)). 
2.3 REMARKS. As stated in Theorems 2.1 and 2.2, the number of operations required 

by Algorithms 2.1 and 2.2 depends upon M(n) and N(j) .  There are many algorithms for 
polynomial multiplication. For example, the classical algorithm gives M(n) = O(n2), binary 
splitting multiplication gives M(n) = 0(n~585), and FFT multiplication gives M(n) -- 
O(n log n) (see, e.g. Fateman [13]). Likewise there are various algorithms for matrix 
multiplication. For example, the classical algorithm gives N ( j )  = O( j  3) and Strassen's 
algorithm gives N ( j )  = O( j  28~) (Strassen [371). Either Algorithm 1.2 or Algorithm 2.2 can 
take fewer operations asymptotically, depending upon which polynomial or matrix multi- 
plication algorithms are used. The following results are easy consequences of Theorems 
2.1 and 2.2. 

(i) Suppose that N ( j )  = O( j  ~) for some a _> 2. Then Algorithm 2.2 takes 
fewer operations than Algorithm 2.1 asymptotically if M(n) ~- o(n~/2/v/(log n)). 

(ii) Suppose that the classical polynomial and matrix multiplication algorithms are 
used, 1.e. M(n) = O(n 2) and N ( j )  = O(j3). Then Algorithm 2.1 gives COMP(n) = 
0(n5/2), while the classical algorithm for composition takes O(n 3) operations. 

(iii) Suppose that the FFT multiplication is used, so M(n) = O(n log n). Then Algorithm 
2.2 gives COMP(n) = O((n log n)3/2), which is the best asymptotic bound known 
for the composition problem. 
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3. Fas t  A lgor i thms  f o r  _Reversion 

Let 

P(s)  ffi p l s  + p2s 2 + - ,  p l # 0 ,  (3.1) 

be given. The functional inverse or reversion of  P is the power series V = p(-1) such that 
P(V(s ) )  = s or V(P(s))  ffi s is a formal identity. The facts that V exists and that vl . . . . .  vn 
depend only upon pl  . . . . .  pn are well known. The reversion problem is to compute 
v~, ..., v~ givenp~, ... , p , .  In this section we show that the reversion problem can be solved 
efficiently by using the fast algorithms for composition presented m Section 2. 

Define a f u n c t i o n f : ~  ~ ~ b y f ( x )  = P ( x )  - s. Since P(V(s ) )  ffi s, V is the zero o f f  
Hence the reversion problem can be viewed as a zero-finding problem. We shall use a 
Newton-like method to fmd the zero o f f ;  other iterations can also be used successfully. 
(See Kung [27] for a similar technique for computing the reciprocals of  power series, and 
also Brent [8, Sec. 13].) The iteration function given by the method is 

~ ( x )  ffi x - f ( x ) / f ' ( x )  ffi x - ( P ( x )  - s ) / P ' ( x ) .  

Since p~ ~ 0, one can easdy check that 9~ maps ~ *  into ~* ,  where ~ *  is the set of  power 
series wlthpo = 0 andp~ # 0. Using the Taylor expansions of  P and P ' ,  we have 

~(x)- v(~) 
(P(V(s ) )  + P ' ( V ( s ) ) ( x  - V(s)) + "")  - s 

= x -  V ( s ) -  
e ' ( v ( s ) )  + e " ( V ( s ) ) ( x  - V(s))  + .. 

l 
= 2P'(V(s)-~) (x  - V(s)) 2 + L 3 P  (V(s))  2 \ ~ ]  j ( x  - V(s))  ~ + .. 

Smcepl  ~ 0, the expansions of  P"(V(s))/P'(V(s)),  P " ( V ( s ) ) / P ' ( V ( s ) ) ,  etc., have no negative 
powers in s. Thus, 

c p ( x ) -  V ( s ) =  A ( s ) ( x -  V(s)) 2, (3.2) 

where A ~ ~ .  Suppose that the first k coefficients, Vl, . . ,  v~, of  V(s) have already been 
computed. Substituting Vk(s) = vls + + vks k for x in (3.2), we have ~(Vk(S)) = V(S) 
(mod $2k+2). Hence by computing the first 2k + 1 coefficients of  ~(Vk(s)) ,  we obtain the 
first 2k + 1 coefficients of  the reversion V(s). This leads to the following algorithm for 
computing the first n coefficients, vl, . . ,  vn, of  V(s). Note that the first coefficient of  V(s) 
is l /p l .  

A L G O R I T H M  3 I (Newton 's  Method)  

1 Set vl ~ l / / h  and  k ~ 1. 

2 Compute vk+l, , v2k+l such that vl, . , v2~+1 are the first 2k + 1 coefficients of Vk(s) - (P(Vk(s)) - s)/ 
P'(Vk(s)), where Vk(s) = Z~-I v,s' 

3 If 2k + 1 _> n, the algorithm terminates 

4. Set k ~-- 2k + 1, and return to step 2 

The essential work of  the algorithm is performed at step 2. Note that in the composiuons 
P(Vk(s))  and P'(Vk(s))  only the first 2k + 1 terms are needed. By Lemmas 2.2 and 2.3, the 
algorithm establishes the following theorem. 

THEOREM 3.1. R E V ( 2 k  + 1) _< R E V ( k )  + C O M P ( 2 k  + 1) + O ( M ( 2 k  + 1)). 
Using the results stated in Secuon 2.3 for the composmon problem, we gxve some 

consequences of  Theorem 3.1: 
(i) Suppose that the classical polynomial  multiplication routine is used, i.e. M ( n )  = 

O(n2). Then COMP(n) = O(n 5/~) Algorithm 3.1 gives REV(n) = 0(n5/2), while in 
this case all classical algorithms for reversion require O(n 3) operations (see, e.g. 
Henncl  [21, pp. 45-65], Traub [38, App. B], and Knuth [26, pp. 444-451]). 
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(i0 Suppose that the F F T  is used for polynomial  mult ipl icat ion,  i.e. M(n) = 
O(n log n). Then  COMP(n)  = O((n log n)312). Algori thm 3 1 gives REV(n)  = 
O((n log n)'~/2), which is the best asymptotic bound  known for the reversion problem 

It is possible to define the reversion of  a power series of  the form 

t = P(s) = s°(1 + p l s  + p2s 2 + ), (3.3) 

where o E K and  o # 0. Indeed, the reversion is of  the form 

s = V(t) = tl/°(l + vd l/° + v2t 2/° + ). 

(See, e g Chrystal  [12, p. 378].) Since by (3.3), t t/° = s(l + pls  + p2s 2 + )l/q, we can 
compute vl, v2, . ,  Vn m the following way: 

(1) C o m p u t e p l  ~/°), t = 1 . . . . .  n, such that 

, { ,  \1/o 

,?oP~li°'s'= t,?oP'S') mod s "+', 

where p0 = 1. 
(2) Fred the reversion of  the series s(1 + p~l/°)s + p~ell°)s 2 + ). 

It wall be shown in Lemma 6.2 that step 1 can be done in O(M(n))  operations.  Hence the 
reversion of  a power series of  the form (3.3) can be done in REV(n)  + O(M(n))  operations. 
In  Section 4 we shall show that M(n) = O(REV(n))  This implies that the n u m b e r  of  
operations required to find the reversion of  the series (3.1) is the same order of  magni tude  
as that required to find the reversion of  the series (3.3). 

A Numerical Example. The algorithms for composi t ion and  reversion have been 
implemented in Fortran,  and several numerical  tests performed. For  example, we computed 
the reversion V(s) = - l n ( 1  - s) of  P(s) = 1 - exp ( - s )  mod s "+~ for various n _< 64. The  
correct result is vj = i / j  for j ~_ 1 With  n = 64, the computed values ~,~ satisfied 1~,~ - vjI 
< 7 × 10 -1~ for a l l j  _< 64. Computa t ions  were performed on a Univac  1108 computer  with 
a 60-bit f loating-point fraction. 

Thus  for this example, our  reversion algorithm is stable A general  investigation of  the 
stability of our  algorithms has not  been carried out. 

4. Equivalence o f  Composition and Reversion 

In  this section we show that the composi t ion problem ts l inearly equivalent  to the reversion 
problem in the sense of  Borodin [4] and  Hopcroft  [22], i.e. 

REV(n) = O(COMP(n))  and COMP(n)  = O(REV(n)).  

It is necessary to make some mild regularity assumptions. We assume that C O M P  satisfies 
Condi t ion  A, and  that REV saUsfies Condi t ion  B. It follows from Theorem 4.1 that both 
C O M P  and  REV satisfy Condi t ions  A and  B. 

LEMMA 4.1. I f  U(s) = p2(S )andS(n )  = L(uo, . . . .  u ,  mod  po . . . .  pn), then M(n)  = 
O(S(n)). 

PROOF. Since 4 P Q  = (P + Q)2 _ ( e  _ Q)2, we have M(n) _< 2S(n) + O(n) 
---- O(S(n)). [] 

LEMMA 4.2. M(n) = O(COMP(n)) .  
PROOF. I f  Q(s) = s 2 and  P(s) = po + P(s) then p2 = Q(p) + 2poP - p~, so S(n) _< 

COMP(n)  + O(n), and  the result follows from Lem m a  4.1. [] 
LEMMA 4.3. M(n) = O(REV(n)). 
PkOOF. Let A(s) = ao + aas + " , B(s) = s + s"+2A(s), and  C = B ~- ' .  Then  it is not  

difficult to show that 

C(s) = s - s~*2A(s) + s2"+3[sA(s)A'(s) + (n + 2)A2(s)] (mod s3"+'). 
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Thus, in REV(3n + 3) + O(n) operations we can compute sA(s)A'(s) + (n + 2)A2(s) mod 
s ~+1. Similarly, by defining B(s) = s + sn+3A(s), one can show that 

C(s) ffi s - sn+aA(s) + s2~+5[sA(s)A'(s) + (n + 3)A2(s)] (mod s3~+6), 

so in REV(3n + 5) + O(n) operations we can compute sA(s)A'(s) + (n + 3)A2(s) mod s n+l. 
By subtraction, we get A2(s) mod s n+~. Hence S(n) _< REV(3n + 3) + REV(3n + 5) + 
O(n). The result follows from Lemmas 1.2 and 4.1 and the fact that REV satisfies Condition 
B. [] 

THEOREM 4.1. REV(n)  = O(COMP(n))  and COMP(n)  -- O(REV(n)) .  
PROOF. From Theorem 3.1, 

REV(2k + 1) _< REV(k) + COMP(2k + 1) + o ( m ( 2 k  + 1)). 

Similarly, if only 2k coefficients are wanted, we have 

REV(2k) _< REV(k) + COMP(2k) + o(m(2k ) ) .  

Hence for any positive integer n, we have 

This implies that 

REV(n) ffi 0 ( ~  COMP([2-:nl)) + 0(2 Mff2-:nl)), 
where the sums are taken over all integers j = 0 . . . . .  [log hi. Since COMP and M satisfy 
Condition A, by Lemma 1.1, 

REV(n) = O(COMP(n)) + O(M(n)). 

The first half  of  the theorem follows from Lemma 4.2. 
To prove the second half, let P(s) = p~s + p2s 2 + ... and Q(O = qo + qlt + .... w e  show 

how to obtain R(s) = Q(P(s)) using reversions. 
If  pl = p2 . . . .  p~ = 0, then qo -- R(s) mod s ~+~. Hence, we may suppose that there 

exists k _< n such that pk # 0 and that if k > 1 then p~ . . . .  pk-1 = 0. Let P(s) = 
(P(s)/pk) ~/~ and Q(t) -- Q(pkt ~) - qo, so R(s) -- Q(P(s)) + qo and s -- P(s) mod s 2. By 
Lemma 6.2 we can compute P(s) mod s ~+' in O(M(n)) operations. By Lemma 4.3, M(n)  
is O(REV(n)). Thus, there is no loss of  generality in assuming below that pl = 1 and q0 = 
0. Define 

V(t) = P(-1)(0 mod t2n+2, 

V(O = (V(O - tn+XQ(t)V'(O) mod  t 2"+2, 
P(s) = f:(-')(s) rood s 2n+2. 

We claim that 

R(s)Pn+'(s) = P(S) - P(s) (mod s2n+2). (4.1) 

To prove this, note that 

P(V(t)) ffi P(V(O ) - e ' (v( t ) ) t"+lQ(t)V'( t )  (mod t2n+2). 
But P(V(t))  = t (rood t2n+2), so P'(V(t ) )V' (O = 1 (mod t 2n+1) and thus 

P(V(0) -- t - tn+'Q(t) (mod t2n+2). (4.2) 

Now substituting #(s) for t in (4.2), we obtain 

P(s) -- PT(s) - :"+1(s)Q(P(s)) (rood s2n+2). (4.3) 

Note that P(s) = P(s) (mod :+2) and deg p~+l = n + I. Thus, (4.3) implies that 

P(s) = #(s) - P~+I(s)Q(P(s)) (rood s2n+2). 
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We have proved (4.1). Hence 

s"+lR(s) = (s/P(s))"+a(P(s) - P(s)) (mod s2"+2). (4.4) 

We can compute R(s)mod s n+a by the following algorithm: 

1 Compute V(t) and V(t) mod t 2n+2 
2. Compute P(s) mod s 2"+z 
3. Compute (s/P(s)) n+~ mod s 2n+2 by the method of Lemma 6 2 
4 Compute R(s) mod s n+~, usmg (44) 

Therefore, we have COMP(n) _< 2 REV(2n + 1) + O(M(2n + 1)). Since REV satisfies 
Condition B, the second half  of  the theorem follows from Lemmas 1.2 and 4.3. [ ]  

5. Special Functions o f  Power Series 

Let P, Q ~ ~ ,  p0 = 0, and R(s) ffi Q(P(s)). In this section we show that L(ro . . . . .  rn mod 
pl . . . . .  pn, qo . . . . .  q~) = O(M(n))  i f  Q satisfies a suitable ordinary differential equation. It 
is an open problem whether a simdar result holds when P rather than Q satisfies a 
differential equation. 

The results given in this section suffice for most practical applications. We do not 
attempt to state the most general results possible, because this would involve us too deeply 
in the theory of  differential equations. 

For  completeness, we sketch the result of  Brent [8] that log and exp of  power series may 
be computed with O(M(n))  operaUons. 

Evaluation o f  log(l + e(s)).  I fR(s)  = tog(l + e(s))  then R'(s) = e ' ( s ) / (1  + e(s)).  Thus 
we can evaluate the first n terms of  R'(s) in O(M(n))  operations, and it is easy to deduce 
the first n + 1 terms of  R(s). 

Evaluation ofexp(P(s)) .  I fR(s)  = exp(P(s)) then log(R(s)) - e(s)  ffi 0, and this equation 
may be solved by Newton's  method. I f  

Ro(s) = 1 and R,+l(s) = R,(s) - R,(s)(log(R,(s)) - P(s)), 

then R,(s) ffi R(s) mod s 2'. Thus, the number  of  operations required to find the first n + 1 
terms of  R(s) is O(M(n)  + M([n/2])  + M(rn/4])  + .) and, by Lemma 1.1, this is 
O(M(n)) .  

Reduction to Dtfferential Equation m R. Suppose the differential equation satisfied by 
Q(t) is ca(t, Q(t), Q'(t) . . . . .  Q(m)(t)) = 0. We may substitute t = P(s) and use the chain rule 
to obtain a differential equation in R(s) = Q(P(s)). The number  of  operations required to 
make this substitution depends on m and the form of  4,, but in many cases of  practical 
interest it is only O(M(n)).  Some examples are given below. Since m is fixed, any method 
gives rl . . . . .  rm-~ in O(1) operations. Thus, we can assume that R(s) satisfies a given 
differential equation ~(s,  R(s), R'(s) . . . . .  R(m>(s)) = 0, with inlUal conditions R(0) = 
ro . . . . .  R(m-1)(O)/(m - 1)! = rm-a, and the problem is to compute rm . . . . .  rn. 

5.1 FIRST-ORDER LINEAR EQUATIONS. It is easy to deal  with first-order linear equa- 
tions of  the form R'(s) + A(s)R(s)  = B(s), R(O) = to, where A and B are given power series. 
The well-known method of  mtegratmg factors gives 

R ( s ) = ( l / J ( s ) ) ( r O + f o S B ( u ) J ( u ) d u ) ,  

where J(s) = exp(fg A(u)du). Since we can compute exponentials of  power series and 
perform formal integrations, R(s) mod s "+1 can be computed in O(M(n))  operations. 

We also need to consider the equation 

R'(s) + (als + A(s))R(s) = t t ls + B(s), 

where a # 0 and R(0) = ro = f l /a .  Using the method of  integrating factors agaiu, we obtain 
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{fo } R(s) = O H ( s ) )  s -~ u"[B(u)J(u) + B((J(u) - 1)/u)]du + B/,~ • 

If  a is a negative integer, we assume that the coefficient of  u -1 in the integrand is zero, for 
otherwise no power series solution exists. Since 

fo ~ 
s-~ u~ 2 c ,u 'du -- ~ ( c , / q  + ,~ + 1))s '÷1, 

J--O J--O 
J~--(a+l) 

provided cj = 0 i f j  + a + 1 = 0, there is no difficulty in performing the formal integration, 
even if a is not an integer. 

5.2 FIRST-ORDER NONLINEAR EQUATIONS. It is well known that nonlinear differen- 
tial equations can be solved by Newton's method if the corresponding linearized equation 
can be solved. See, for example, Rail [34]. We shall not attempt full generality here, but 
shall illustrate the idea using the Riccati equation 

~ R ( s )  -= R'(s) + a(s )R(s )  - (R(s)) 2 - B(s) = O, 

where A(s) and B(s) are given power series, and R(0) = r0. 
Since (using Rail's notation) ~¢'(R) = d /ds  + (A - 2R)L  the Newton iteration is 

fo R,+I(s) = R,(s) - (1/Jj(s)) (R,(u))J~(u)du, 

where Jj(s) = exp (fg (A(u) - 2Rj(u))du). To study the convergence property of  Newton's 
method a norm is often used. For our purpose, we use a valuation on ~ .  Then the 
quadratic convergence of  an iteration on ~ means that the number of  correct terms doubles 
at each iteration. (See Kung and Traub [29] for details.) Using a Newton-Kantorovich 
type theorem (see, e.g. Bachman [3, pp. 52-55] and Rail [34, pp. 135-138]), one can easily 
show that if the initial approximation Ro(s) = ro + ... r ~  is taken to be an initial segment 
of  the solution series with I sufficiently large, then Newton's method converges quadrati- 
cally. The terms in Ro(s) may be obtained, for example, by equating coefficients. Since I is 
fixed, any method gives Ro(s) m O(1) operations. Thus to compute R(s) mod s n, we 
compute Rj(s)  rood s v+* and only [log2(n - l)] iterations are required. Since 
O(M(2 J + l)) operations are needed at t he j th  iteration, the number of  operations is O(l) 
+ o ( m ( n )  + M([n/2])  + . ) = O(M(n)) .  

The generailzatlon to the Riccati equation in which A(s)  is replaced by a / s  + A(s)  and 
B(s) by f l / s  + B(s) is straightforward. In fact, the following theorem can be shown by the 
above argument. 

THEOREM 5.1. I f  a f o r m a l  power  series solution exists f o r  the differential equation 

R'(s) = F(s, R(s)), R(O) = ro, 

where F is a btvanate rational expression, then the f i rs t  n terms o f  the solution series can be 
computed in O(M(n))  operations. 

The generalization of  Theorem 5.1 to the case where Fitself  is a bivariate infinite power 
series or to the case of  vector differential equations is straightforward. For example, 
consider the following differential equation: 

R'(s) -- F(R(s)),  R(0) = 0, (5.1) 

where F is a umvariate power series. To compute the first n terms in R we need only the 
first n terms in F. When we solve (5.1) by Newton's method, the main cost of  each iterauon 
is due to composition. Hence the first n terms in R can be obtamed in O(COMP(n)) 
operations. It is instructive to note that if V is the reversion of  the P defined by (3.1) then 
by the chain rule P'(V(s))  V'(s) = 1. Thus V is the power series solution of  (5.1) with 
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F = I /P ' .  This gives another proof that REV(n) = O(COMP(n)). By the result of  Section 
4, we have therefore shown that the problem of solving differential equation (5.1), the 
composition problem, and the reversion problem are all equivalent. 

5.3 SECOND-ORDER LINEAR EQUATIONS. Suppose R"(s)  + A(s)R'(s)  + B(s)R(s)  = 
C(s), where A(s), B(s), and C(s) are given power series, and R(0) = ro, R'(0) = rl. The 
well-known method of  factorization (Burkill [6]) reduces this second-order problem to 
three first-order problems, one of  which is nonlinear. If  2 is the differentiation operator, 
we want power series S(s) and T(s) such that ( 2  + S ) ( 2  + T ) R  = 2 2 R  + A 2 R  + BR,  i.e. 
S + T = A and T '  + S T  = B, which gives T'  + A T - T 2 - B = 0. This is just the Riccati 
equation discussed above. The initial condition T(0) = to may be chosen arbitrarily. Once 
T and S = A - T are known, we may solve the first-order linear equations U' + 
S U  = C, U(O) = rl + toro and R" + TR = U, R(O) = ro to obtain U = ( 2  + T ) R  and then 
R. Hence R(s) rood s "+1 can be computed in O(M(n))  operations. 

The generalization in which A(s) is replaced by a / s  + A(s),  etc., is similar, except that 
to = / 3 / a  is chosen so that T(s) is a power series. 

By repeated application of  linearization (i.e. Newton's method) and factofization, the 
solution of  a differential equation of  arbitrary order can be reduced to the solution of  first- 
order linear equations. In practice second-order equations are the most common, and we 
give two examples below. 

Hypergeometric Functions o f  Power Series. As our first example we consider the 
computation of  R(s) = F(a, b; c; P(s)), where F is the hypergeometric function 

o o  

F(a, b; c; z) = Y, ((a),(b)J(c)~). z ' / j ! .  
3=0 

(Here (a)~ = r ( a  + j ) / r ( a ) ,  etc.) By suitable choice of  a, b, and c, many elementary 
functions can be wntten in this form; see Abramowitz and Stegun [1]. Now w = F(a, b; c; 
z) satisfies the hypergeometric differential equation 

z(l - z)d2w/dz 2 + [c - (a + b + l ) z]dw/dz  - abw = O, 

so substituting z = P(s), w = R(s) and using the chain rule gives 

R" + ([c - (a + b + I )P]P ' / [P( I  - P)] - P " / P ' } R '  - (ab(P')2/(P( l  - P)) )R = O, 

with initial conditions R(0) = 1 and R'(O) = abP'(O)/c. Thus, we have a second-order 
linear equation whose power series solution may be obtained as described above, and to 
compute R(s) rood s "+1 requires only O(M(n))  operations. Generalized hypergeometric 
functions of  power series may also be computed in O(M(n))  operations, using the 
generalized hypergeometric equation (Henrici [21]) and an obvious generalization of  our 
method. 

The algorithm for hypergeometric functions over the real field has been implemented in 
Fortran. Numerical tests indicate that the effect of  rounding errors is usually no worse, 
and often better, than for the obvious O(n 3) algorithm. However, a rigorous analysis of  the 
numerical properties of  our algonthms has not yet been attempted. Special cases which 
have been tested numerically include F(I, 1; 2; 1 - e 8) = s / (e  s - 1), F ( - a ,  a; V2; 
sin2(x/s)) = cos(2ax/s), and F(V2, ~/2; %; s 2) = arcsin(s)/s. 

Bessel Functions o f  Power Series. Our second example is the computation of  R(s) = 
J,(P(s)), where the Bessel function w = L(z) = (z/2)" Y,7-0 (-~/4 z2)k/(k!(v + k)!) satisfies 
the differential equation 

dZw/dz 2 + ( l / z ) d w / d z  + (1 - v2/z2)w -- O. 

We may substitute w = R(s) and z = P(s) to obtain a second-order equation for R, and 
proceed as above. A slight generalization is necessary to deal with the v2/z2 term, but this 
can be avoided by making the change of  variables w = z ' W ,  which gives a differential 
equation 
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d 2 W / d z  2 + ((2v + l ) / z ) d W / d z  + W = 0 

of the form discussed above. 

6. Evaluation o f  Truncated Reversion at a Point 

Let P E : ,  p0 = 0, and V -- Pt-~). In this section we show that L(vn rood p~ . . . . .  p~) = 
O(M(n))  and L(Vn(a) mod a, p l  . . . . .  p,~) = O(M(n)) ,  where V~(0 is the "truncated reversion" 
ofe(s) ,  i.e. V~(t) -- vd + v2t 2 + .. + vnt ~. 

We need some definitions. The quotient field o f :  is isomorphic to the field .~ of  formal 
Laurent series over K, i.e. series ~7._® ajt ~ where a~ E K and only f'mitely many aj are 
nonzero for negative j. I f  A ~ ..~ we define the "residue" of  A to be rest[A(0 ] = a-~. 

LEMMA 6.1. rest[A(t)] =- res t [ tA ' ( t ) ] .  
LEMMA 6.2 (Brent [8]). Let  P(s) = p k s  k + pk+lSk+l+ " • wi thpk # O f o r  some k >_ 0 be 

given. Le t  R(s) = P°(s) f o r  some number e # O. I f  p~ is given, then the f i rs t  n terms in R(s) 
can be computed in O(M(n))  operations. 

PROOF. Defme #(s) by P(s) =pksk[l  + #(S)]. Then 

R(s) = pis~[l + P(s)] ° = l~S °~ exp{o, log[ I + #(s)]}. 

The lemma follows from the preliminary results of Section 5. [] 
LEMMA 6.3. V~ = (I/n) res,[P"n(s)] = res,[sP'(s)/Pn+1(s)]. 
PROOF. The first equation follows from the Lagrange-Burmann Theorem (see, e.g. 

Henrici [21] and Knuth [26]) and the second equation follows from Lemma 6.1. [] 
THEOREM 6.1. L(v~ modpl ..... p~) -- O(M(n)). 
PROOF. Note that res,[P-n(s)] is the coefficient of s n-~ in [s/P(s)] n. Thus, the result 

follows from Lemmas 6.2 and 6.3. [] 
LEMMA 6.4. 

V~(a) = res,[(an+lsP/(s))/(en+t(s)(a - P(s)))]. 

PROOF. From Lemma 6.3 and the definition of  V~ we have 

res'L-~-l-se'(s) :-~ ] Vo<a> = _ res,tsP'<s>/ P'+'<s)la' = <alP<s>>' 
J=l 

[-sp'(s)a(a" - 

= tess L P<s)) .I" 

Since ress[sP'(s)a/(P(s)(a - P(s)))] = 0, the result follows. []  
THEOREM 6.2. L(Vn(a)mod a, px . . . . .  pn)  = O(M(n)) .  
PROOF. If  a = 0 then Vn(a) = O. I f  a # 0 then, from Lemma 6.4, Vn(a) is the coefficient 

of  s ~-1 in an+lP'(s)/((P(s)/s)~+l(a - P(s))). Thus, the result follows from Lemma 6.2. []  
Application to Root  Finding. Suppose K is the real or complex field, f : D  C K ~ K is a 

sufficiently smooth function with a simple zero ~ in the interior of  D, and x0 is a sufficiently 
good approximation to ~. The direct and inverse polynomial interpolation methods (Traub 
[38]) may be used to obtain a better approximation xl = ~ + O([xo - ~r+t). Both methods 
depend on the evaluation o f f ( x o ) , f ' ( x o )  . . . . .  f l~)(xo).  For the direct method, xl is chosen 
to be a sufficiently good approximation to the appropriate zero of  the Taylor polynomial 
~ - o  (x  - xo)f tJ~(xo)/ f i .  If  this zero is found by Newton's method with x0 as the starting 
approximation, then [log2(n + 1)] iterations are required so the combinatory cost (Kung 
and Traub [28]) or "overhead" is O(n log n). Taqan  has shown that this can be reduced to O(n). 

I f  P(s) =f (x0  + s) - f ( x o )  = ~=1 s~f~J~(Xo)/j!, and V = pC-l) is the reversion of  P, then 
P(~ - xo) = - f ( xo ) ,  so ~ = xo + V( - f ( xo ) ) .  The inverse polynomial interpolation method 
avoids the need to fred the zero of  a polynomial by approximating V rather than P. In fact, 
the inverse method takes x l  = Xo + Vn( - f ( xo ) ) ,  where Vn is the truncated reversion of  P 
(or, equivalently, of  Pn(s) -- ~ - 1  sf~:~(Xo)/j!). From Theorem 6.2, the combinatory cost is 
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O(M(n)) = O(n log n). Thus,  the combinatory  cost of  both  the direct and  inverse methods  
is O(n log n). This  result is main ly  of  theoretical interest, for in  practice n is usual ly small. 

Applicatwn to Queueing Theory. By a result of  Brockwell [111 and  F inch  [15, 16] it can  
be shown that for a G1/M/1 queue which is inl tmlly empty, the probabi l i ty  that the nth 
arrival finds more t h a n j  customers in  the queue is the coefficient of  s n-~-~ in the generat ing 
funct ion e'(s)/((P(s)/s)~+t(l - P(s))) for some given power series P(s). Hence the method  
used in  the proof  of  Theorem 6.2 can be applied with small  changes for comput ing  the 
probabilit ies.  The details of  this result will be given in a separate paper. 

Evaluation of  One Coefficient in Composition. Let P, Q E ~ , p o  = 0, and  R(s) = 
Q(P~-'(s)). The following theorem is similar to Theorem 6.1. 

THEOREM 6.3. L(r~ modpt  . . . . .  p~, qo . . . . .  q~) = O(M(n)). 
PROOF. Since r0 = q0, we may suppose n > 0. F r o m  the Lagrange-Bi i rmann theorem, 

r~ = res~[a'(s)/e~(s)]/n = coefficient of  s n-1 i l l  Q'(s)(s/P(s))~/n, 

so the result follows from L e mma  6.2. El 
It is an  open problem whether  Theorem 6.3 holds if  R(s) = Q(P(s)) instead of  

Q(e~-'(s)). 
A Numerical Example. Taking  P(s) = 1 - exp(-s ) ,  we evaluated the t runcated reversion 

V~ at a for various n and  a by the algorithm establishing Theorem 6.2, using a Univac  
1108 computer  with a 60-bit f loat ing-point  fraction. The effect o f  rounding  errors increased 
as n increased, bu t  was not  excessive for small  values of  a. ( In  the root-f inding applicat ion 
a should be small.) It seems that the growth in rounding  error is due to the i l l -condit ioning 
of the problem. Some typical results are given in Table  I, where Vn(a) are the computed 
values. 

TABLE I 
n a I ~n(a) -- Vn(a)l n a I ~'n(a) - Vn(a)l 
16 0 1 3 X 10 -18 32 02 8 × 10 -la 
16 0 2 1 X 10 -16 32 0 4 5 X 10 -11 

16 04 l X 10 -14 32 08 8 X 10 -a 
16 0.8 5 X 10 -11 64 0 1 4 X 10 -15 
16 1 6 6 X 10 -7 64 0 2 5 X 10 -12 
32 0 1 9 X 10 -17 64 04 2 X 10 -a 

7. Multivariate Cases 

We have so far dealt with power series in one variable. The results o f  previous sections in  
principle can be applied and  generalized to power series in  several variables, provided that 
appropriate care is taken to handle  various singularity problems associated with mult ivari-  
ate power series. In  this section we state some of  our  results on  the composi t ion problem 
for bivariate power series. For  more complete t reatment  of  the mult ivariate  case, the reader 
is referred to Brent and  K u n g  [10]. 

We first extend our mod s n+l notat ion to bivariate power series. Let Q(s, t) = 
~,j-o q,,~s'# be a bivariate power series. We define the degree of  the term q~,~s~f to be 
i + j. Q(s, t) rood (s + t) n÷t denotes the finite series consisting of  all terms of  Q(s, 0 of  
degree less than  n + 1. To compute  Q(s, t) mod (s + 0 n+~ means  to compute  the q,,j for all 
t, j such that i + j _< n. 

THEOREM 7.1. Given a bivariate power series Q and two univariate series P1, P2 with no 
constant terms, R(s) = Q(Pi(s), Pz(s)) rood s ~÷1 can be computed in O(n2log n) operations. 

THEOREM 7.2. Given a univartate power series Q and a btvartate series P wtth no constant 
term, R(s, t) = Q(P(s, t)) mod (s + t) ~÷1 can be computed in O(n 2 Slog n) operations. 

THEOREM 7.3. Given three bivariate power series Pi, P2, and Q, where Pi and P2 have 
no constant terms, R(s, t) = Q(ex(s, t), Pz(s, t)) mod (s + t) ~+1 can be computed in O(n 251ogl 5n) 
operations. 
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Note that the classical bounds for the composition problems considered in Theorems 
7.1, 7.2, and 7.3 are O(n4), O(nS), and O(n6), respectively (or O(n31og n), O(nqog n), and 
O(n41og n), respectively, if the FFT polynomial multiplication is used). 
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