
Fast Algorithms for Manipulating Formal Power Series

R P. B R E N T

Australian National Umverstty, Canberra, Austraha

A N D

H T K U N G

Carnegie-Mellon Umvers:ty, Pittsburgh, Pennsylvama

ABSTRACT The classical algorithms require order n ~ operations to compute the first n terms in the reversion of
a power series or the composition of two series, and order nelog n operations if the fast Founer transform is used
for power series multiplication In this paper we show that the composition and reversion problems are equivalent
(up to constant factors), and we give algorithms which require only order (n log n) ~/2 operations In many cases
of practical importance only order n log n operations are required, these include certain special functions of
power series and power series solution of certain differential equations Applications to root-finding methods
which use inverse mterpolauon and to queuemg theory are described, some results on multivariate power series
are stated, and several open questions are mentioned

K E Y WORDS AND PHRASES formal power series, reversion of power series, composition of power series,
computational complexity, fast algorithms, special functions of power series, power series solution of dlfferentml
equations, queuetng theory, fast Fourier transform

CRCATEGORIES 5 7 , 5 15,5 17

1. Introduction

We are mterested m the complexity of algorithms for mampulatlng formal power series.
For example, such algorithms may compute the first n terms in the product, quotient, or
composition of two gwen power series. These problems arise in combmatorics and analysis
of algorithms, where the desired power series is a generating function, as well as in
numerical analysis. See, for example, Knuth [26], Ferguson, Nielsen, and Cook [14],
Riordan [35], Gilbert [18], Nwen [31], Jackson and Reilly [25], Levy and Lessman [30],
Norman [32], and Henrici [20, 21].

Let ~ be the integral domain of formal power series P(s) = po + p~s + p2s 2 + over
some field K "Formal" means that we are not concerned with questions of convergence.
If F is a set of indetermmates over K, and E is a finite subset of the extension field K(F),
then L (E mod F) denotes the number of operations necessary to compute E, starting from
K U F and working in K(F). Informally, L (E rood F) is the number of operations required
to compute E, given F.

If A, B E @ and C is the formal product of A and B, we define M(n) = L(¢o cn mod
a0 an, b0 b,,) Informally, M(n) is the number of operations required to compute the

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Comput ing Machinery To
copy otherwise, or to republish, requires a fee and /or specific permission

This research was supported in part by the National Science Foundation under Grant MCS75-222-55 and the
Office of Naval Research under Contract N00014-76-C-0370, N R 044-422

Authors' addresses R P Brent, Computer Science Department, Stanford Umverslty, Stanford, CA 96305, H T
Kung, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213

© 1978 ACM 0004-5411/78/1000-0581 $00 75

Journal of the Association for Computmg Machinery, Vol 25, No 4, October 1978, pp 581-595

582 R P BRENT AND H T K U N G

first n + 1 coefficients in the product of two power series. The classical algorithm gives
M(n) = O(n2), but if the field K is capable of supporting the fast Fourier transform (FFT),
then M(n) = O(n log n) (see, e.g. Knuth [26] and Borodin and Munro [5]).

Let P, Q E ~ , po = 0. The composition of Q and P is the formal power series R such
that R(s) = Q(P(s)) is a formal identity. The composition problem is to compute r0 r ,
given pl pn and q0 q,. We define COMP(n) = L(ro rn mod pt p, ,
qo q,), so COMP(n) is the number of operations required to solve the composmon
problem.

The functional mverse or reverswn of P is the power series V = p(-l) such that P(V(s))
= s or V(P(s)) = s is a formal identity. The reversion problem Is to compute vl vn given
pl pn. It is clear that the problem can be viewed as that of computing the derivatives
of the inverse function (see, e.g. Traub [38, App. B]). We define REV(n) = L(v~ vn mod
pl pn).

The classical algorithms for both the composition and reversion problems reqmre order
n 3 operations (see, e.g. Knuth [26]), or order n21og n operations ff the FFT is used for
polynomial multiplication as pointed out in Kung and Traub [28, §4]. In fact the classical
algorithms give COMP(n) = O(nM(n)) and REV(n) = O(nM(n)). In Section 2 we show
that COMP(n) -- O((n log n)l/2M(n)). We also give an O(x/n • max(M(n), N(~/n))) algorithm
where N (j) is the number of operations required to multiply two j × j matrices. This
algorithm is faster than both the O((n log n)I/2M(n)) algorithm and the classical algorithm
when the polynomial multiplication algorithm to be used imphes that M(n) has order at
least N(~/n)/~/(log n) (e.g. when M(n) ~ cn 2 for some constant c) In Section 3 we show
that the reversion problem can be solved by Newton's method and composmon, so REV(n)
= O((n log n)l/2M(n)) also.

In Section 4 we show that COMP(n) = O(REV(n)) and REV(n) = O(COMP(n)), so the
composition and reversion problems are essentially eqmvalent. Thus, in attempting to
obtain improved upper or lower bounds one can work with either the composmon problem
or the reversion problem.

In Section 5 we show that the composition Q(P(s)) may be computed m O(M(n))
operations if Q satisfies a suitable differential equation. For example, Q could be a Bessel
function or a hypergeometnc function. We also study the complexity of computing the
formal series solution of certain first-order differential equaUons. In Section 6 we mention
several other problems for which O(M(n)) algorithms exist, and give an application to the
theory of root-finding methods. Most of this paper is restricted to power series m one
variable, but the methods extend to dense power series in several variables. Some of our
results on multivariate cases are stated in Section 7. The considerations for sparse power
series and polynomials m several variables are rather different; see Hemdel [19] and
Horowitz [23, 24].

In this paper we analyze algorithms under the assumption that all coefficient computa-
tions are done m a finite field or in finite-precision floating-point arithmetic. An analysis
dealing with varmble-precision coefficients is yet to be performed.

Some of the results of this paper were announced in Brent and Kung [9].
Some Regularity Condttions. Let Z + be the set of all nonnegative integers and let G: Z +
Z ÷ be a nondecreasmg function. We say that G satisfies Condttion A if, for some a, fi

(0, 1), G([an]) _< fiG(n) for all sufficiently large n. We say that G satisfies Cond#ion B
if, for some a' , /3 ' ~ (0, 1), G([a'nJ) _> fi'G(n) for all sufficiently large n. For example, ff G
is nondecreasing and CxnYlog~n _< G(n) _< C2nYlo~n for positive constants ~, C1, C2, and any
constant ~, then G satisfies Conditions A and B.

LEMMA 1.1. I f G satisfies Condition A and p ~ (0, 1), then

~ l ' p ' n l) = O(G(n)), (1.1)

where the sum is taken over all integers j _> 0 such that pJn _> 1.
PROOF. It is easy to show that ~G([pJn])/G(n) is bounded by a convergent geometric

series for all sufficiently large n. See Brent [7, Lemma 3.4] for detads. []

Fast A lgorithms fo r Manipulatmg Formal Power Series 583

LEMMA 1.2. I f G sattsfies Condttion B and y > 1, then

G(Lynj) = O(G(n)). (1.2)

PROOF. There ex is t s j such that a'J7 _< 1. Thus, for all suff ioent ly large n,

G(t'mJ) -< (l/fi ')G(tdyynJ) <- _< (l / f l ' yG(n) . E]

We say that G satisfies Condmon A~ If G satisfies Conditwn A with 1 > a -> fl > 0.
Clearly Condi t ion As is stronger than Condi t ion A. For example, if G(n) = [n~]H(n) for
some constant 6 >_ 1 and some nondecreasmng funcUon H . Z + ~ Z ÷, then G satisfies
Condi t ion AM.

LEMMA 1.3. I f G satisfies Condition As and p E (0, 1), then

~p-:G([p:n]) = O((log n)G(n)). (1.3)

where the sum ts taken over all integersj >_ 0 such that p:n .~ I.
PROOF. Assume n Is sufficiently large. Since G([an'[) <_ fiG(n) <_ aG(n),

G([a°n]) _< G([at"Jn]) _< at°JG(n) < (l /a)a°G(n)

for any real o _> O. Let y = log,p. Then for a l l j _> O,

G(F0'nq) = G([a~Jnq) -< (l /a)ar~G(n) = (1/a)pJG(n),

and the result follows immediately. E]
We assume throughout the paper that M satisfies Condition As. Similar condit ions are

usual ly assumed, either explicitly (see, e.g. Aho, Hopcroft, and U l l m a n [2, p. 280] and
Fischer and Stockmeyer [17]) or imphclt ly (see, e.g. Borodin [4]). We shall also assume
that C O M P and REV satisfy Condi t ions A and B, respectively One should note, however,
that what we really need in this paper are the consequences of these conditions, namely,
the properttes (1.1), (1.2), and (1.3)

Notatton. s and t denote free variables or indetermlnates over K. Forma l power series
over K are denoted by upper-case letters, and the coefficients in the power series by
corresponding lower-case letters, e.g. P(s) = po + pls + • + p~s n + . The formal
derivative of P is P'(s) = px + 2p2s + .. , and the formal mtegral of P is .f~ P(t)dt = pos
+ V2pls 2 + . . . For any positive integer k, P(s) mod s k denotes the finite series consisting
of all terms of P(s) of degree less than k. To compute P(s) mod s k means to compute
po, . . , ph-l. By the notat ion Q(s) = e(s) (mod sk), we mean (e(s) - Q(s)) mod s k = 0, Le.
power series P(s) and Q(s) agree in their terms of degree less than k. Where necessary we
assume that the characteristic of K is zero or sufficiently large.

2. Fast Algortthms fo r Compositwn

Let P(s) = p~s + + pns ~ and Q(t) = qo + + q~t ~ be given. In this section we give two
algorithms for comput ing the first n + 1 coefficients, r0, ... , r~, in the series R(s) =
Q(P(s)).

2.1 THE FroST ALGORITHM. The algori thm is based on the following grouping of
terms of Q(t).

Q(t) = Qo(t) + Ql(t)t k + Q2(t)(tk) 2 + + Qk-l(t)(tk) k-l,

where k = [x/(n + 1)] and Q,(t) = ~z01 q,k+~t j, t = 0 k - 1 (assume qz = 0 for l > n).
A similar idea was used by Paterson and Stockmeyer [33].

ALGORITHM 2 I

1. Compute P'(s), l ~ 2 k.

2 Let T(s) ffi Pk(s) mod s ~+~ Compute T'(s), l = 2, , k - 1

3 Compute Q,(P(s)), i = 0 k - 1, by using the results of step !

4 Compute Q,(P(s))T'(s), l = 1, , k - 1, by using the results of steps 2 and 3

5 Compute ~,k2d Q,(P(s))T'(s) by using the result of step 4

584 R P. B R E N T A N D H T K U N G

Note that during the computation we always truncate terms of degree higher than n. It
is easy to see that steps 1, 2, 4, and 5 each can be done in O(kM(n)) = O(~/nM(n))
operations. In the following we examine step 3. Let

(P (s) y = ~ p~J)s t rood s ~+1, j = 0 k.
l -0

(Note that all p~J~ are available after step 1.) Then

k-1 n

Q,(V(s)) = X q,*+J X P~ J~sl (moO s ~+1)
J=0 l--0

= q,~+~pJl~ s I (mod s~+l).
1=0 \ j r 0

Step 3 amounts to computing ~ 2 d q,k+wt- -~J~ for l = 0, , n, t = 0, , k - 1, given the q,k+j
and p~J). The computatton may be viewed as the following matrix multiphcation between
an (n + 1) × k and a k × k matrix:

This can clearly be done by performing [(n + 1)/k] matrix multiplications between k X k
matrices. Define

N (j) = number of operaUons needed to multiply two] x j matrices.

Then step 3 takes O((n /k)N(k)) or O(x /nN(x /n)) operations. Therefore Algorithm 2.1
establishes the following:

THEOREM 2.1 C O M P (n) -- O (x / n . m a x (g (n) , N(x/n))) .
2.2 THE SECOND ALGORITHM. The second algorithm is based on a formal Taylor

expansion of Q. Write P(s) = Pro(S) + P,(s), where Pro(s) = p ls + "'" + p ~ m and P,(s) =
pm+xs ra+l + pm+2S m+2 + " for some m < n. (The value o f m will be determined later.) It can
be shown by inducuon that the following Taylor expansion holds formally:

Q(P) -- Q(Pm + er) = Q(Pm) + Q'(Pm)P, + ½Q"(Pm)(P,) 2 +

Let l = In~m]. Since the degree o f any term in (Pr) TM is at least n + 1 for any i > 0,

Q(e(s)) = Q(e~(s)) + Q'(em(s)) .er(s) + ... + (I/I!)Q~>(Pm(s)).P~(s) (rood s"+l).

This equality gives us the following algorithm for computing the first n + 1 coefficients in
the series R(s) -- Q(P(s)):
A L G O R I T H M 2 2

!. Compu te Q(P,~(s)) mod s "+~.

2. Compu te Q'(P=(s)), Q"(Pm(s)) Q°>(Pm(s)) m o d s n+l

3. Compute Pr(s), P~(s), , P~(s) rood s n+l

4. Compute (I/t!)Q~°(Pm(s)) P~(s) m o d s ~+1 for i = 1, , I

5. Sum the result obta ined f rom step 4.

LEMMA 2.1. I f P(s) = pls + "'" +pros '~, Q(t) = qo + "" + qjt ~ with m , j < n and i f R(s)
= Q(P(s)) = ro + r~s + .-, then

L(ro rn mod pl pm, qo qj) = O((jm/n) (log n)M(n)).

PROOF. We may assume that j is a power of 2. Write Q(P) = Q~(P) + psi2. Qz(P),
where Q1 and Q2 are polynomials of degree j /2. This relation gives us a recursive procedure

Fast A lgorithms for Manipulating Formal Power Series 585

for computing Q(P). During the computation we always truncate terms of degree higher
than n. Note that deg PJ <_ jm and deg Q(P(s)) _< jm when deg Q = j. Assume that T(j)
operations are needed to compute both PJ/2mod s "+~ and Q(P) mod s "+1 with deg Q = j.
Then by the recursive procedure, we have

T(j) _< 2T(j /2) + O(M(min(jm, n))).

Let r be the largest integer k such tha t jm/2 ~ _> n. We can assume r >_ 0. We have

T (j) = O(M(n) + 2M(n) + ... + 2rM(n)) + 2r+lT(j/2 r+l)
_< O((jm/n)M(n)) + (2jm/n)T(j/2~+l).

Since j m / 2 r+x < n,

T (j /2 ~+~) = O(M(jm/2 r+x) + 2 g (j m / 2 ~+2) + ...)
= O(M(n) + 2M([n/2]) + 4M([n/4]) +)
= O((log n)M(n))

by Lemma 1.3. Hence T(j) = O((jm/n)(log n)M(n)). Q
LEMMA 2.2. Let U(s) = P(s)/Q(s) with qo # O. Then

L(uo u, mod po p,, qo q,) = O(M(n)).

PROOF. Use a Newton-like method as in Kung [27]. (See also Sieveking [36].) [3
LEMMA 2.3. Let P(s) -~ p~s + p2s 2 + .. , Q(t) -- qo + qat + " , and let Q'(t) = ql +

2qzt + "", the formal derivative of Q(t) with respect to t. I f R(s) -- Q(P(s)) and D(s) =
Q'(P(s)), then

L(do d, rood rx r,+l, pl p,+l) = O(M(n)).

PROOV. By the chain rule, R'(s) -- Q'(P(s)).P'(s). Hence D(s) -- R'(s)/P'(s), and the
result follows from Lemma 2.2. D

By Lemma 2.1, step 1 of Algorithm 2.2 can be done in T1 = O(m(log n)M(n)) operations.
By Lemma 2.3, step 2 of Algorithm 2.2 can be done in T2 = O(lM(n)) = O((n/m)M(n))
operations, since Ql')(Pm(s)), i = 1 l, can be computed successively and each of
them takes O(M(n)) operations. It is easy to check that steps 3, 4, and 5 can all be done in
O(T2) operations. Hence the total number of operaUons needed by Algorithm 2.2 is
O(T~ + T2). Choose m ~ (n/log n) ~/2. Then O(T~ + T2) = O((n log n)l/2M(n)). We have
shown the following:

THEOREM 2.2. COMP(n) = O((n log n)l/2M(n)).
2.3 REMARKS. As stated in Theorems 2.1 and 2.2, the number of operations required

by Algorithms 2.1 and 2.2 depends upon M(n) and N(j) . There are many algorithms for
polynomial multiplication. For example, the classical algorithm gives M(n) = O(n2), binary
splitting multiplication gives M(n) = 0(n~585), and FFT multiplication gives M(n) --
O(n log n) (see, e.g. Fateman [13]). Likewise there are various algorithms for matrix
multiplication. For example, the classical algorithm gives N (j) = O(j 3) and Strassen's
algorithm gives N (j) = O(j 28~) (Strassen [371). Either Algorithm 1.2 or Algorithm 2.2 can
take fewer operations asymptotically, depending upon which polynomial or matrix multi-
plication algorithms are used. The following results are easy consequences of Theorems
2.1 and 2.2.

(i) Suppose that N (j) = O(j ~) for some a _> 2. Then Algorithm 2.2 takes
fewer operations than Algorithm 2.1 asymptotically if M(n) ~- o(n~/2/v/(log n)).

(ii) Suppose that the classical polynomial and matrix multiplication algorithms are
used, 1.e. M(n) = O(n 2) and N (j) = O(j3). Then Algorithm 2.1 gives COMP(n) =
0(n5/2), while the classical algorithm for composition takes O(n 3) operations.

(iii) Suppose that the FFT multiplication is used, so M(n) = O(n log n). Then Algorithm
2.2 gives COMP(n) = O((n log n)3/2), which is the best asymptotic bound known
for the composition problem.

586 R P B R E N T A N D H T K U N G

3. Fas t A lgor i thms f o r _Reversion

Let

P(s) ffi p l s + p2s 2 + - , p l # 0 , (3.1)

be given. The functional inverse or reversion of P is the power series V = p(-1) such that
P(V(s)) = s or V(P(s)) ffi s is a formal identity. The facts that V exists and that vl vn
depend only upon pl pn are well known. The reversion problem is to compute
v~, ..., v~ givenp~, ... , p , . In this section we show that the reversion problem can be solved
efficiently by using the fast algorithms for composition presented m Section 2.

Define a f u n c t i o n f : ~ ~ ~ b y f (x) = P (x) - s. Since P(V(s)) ffi s, V is the zero o f f
Hence the reversion problem can be viewed as a zero-finding problem. We shall use a
Newton-like method to fmd the zero o f f ; other iterations can also be used successfully.
(See Kung [27] for a similar technique for computing the reciprocals of power series, and
also Brent [8, Sec. 13].) The iteration function given by the method is

~ (x) ffi x - f (x) / f ' (x) ffi x - (P (x) - s) / P ' (x) .

Since p~ ~ 0, one can easdy check that 9~ maps ~ * into ~* , where ~ * is the set of power
series wlthpo = 0 andp~ # 0. Using the Taylor expansions of P and P ' , we have

~(x)- v(~)
(P(V(s)) + P ' (V (s)) (x - V(s)) + "") - s

= x - V (s) -
e ' (v (s)) + e " (V (s)) (x - V(s)) + ..

l
= 2P'(V(s)-~) (x - V(s)) 2 + L 3 P (V(s)) 2 \ ~] j (x - V(s)) ~ + ..

Smcepl ~ 0, the expansions of P"(V(s))/P'(V(s)), P " (V (s)) / P ' (V (s)) , etc., have no negative
powers in s. Thus,

c p (x) - V (s) = A (s) (x - V(s)) 2, (3.2)

where A ~ ~ . Suppose that the first k coefficients, Vl, . . , v~, of V(s) have already been
computed. Substituting Vk(s) = vls + + vks k for x in (3.2), we have ~(Vk(S)) = V(S)
(mod $2k+2). Hence by computing the first 2k + 1 coefficients of ~(Vk(s)) , we obtain the
first 2k + 1 coefficients of the reversion V(s). This leads to the following algorithm for
computing the first n coefficients, vl, . . , vn, of V(s). Note that the first coefficient of V(s)
is l /p l .

A L G O R I T H M 3 I (Newton 's Method)

1 Set vl ~ l / / h and k ~ 1.

2 Compute vk+l, , v2k+l such that vl, . , v2~+1 are the first 2k + 1 coefficients of Vk(s) - (P(Vk(s)) - s)/
P'(Vk(s)), where Vk(s) = Z~-I v,s'

3 If 2k + 1 _> n, the algorithm terminates

4. Set k ~-- 2k + 1, and return to step 2

The essential work of the algorithm is performed at step 2. Note that in the composiuons
P(Vk(s)) and P'(Vk(s)) only the first 2k + 1 terms are needed. By Lemmas 2.2 and 2.3, the
algorithm establishes the following theorem.

THEOREM 3.1. R E V (2 k + 1) _< R E V (k) + C O M P (2 k + 1) + O (M (2 k + 1)).
Using the results stated in Secuon 2.3 for the composmon problem, we gxve some

consequences of Theorem 3.1:
(i) Suppose that the classical polynomial multiplication routine is used, i.e. M (n) =

O(n2). Then COMP(n) = O(n 5/~) Algorithm 3.1 gives REV(n) = 0(n5/2), while in
this case all classical algorithms for reversion require O(n 3) operations (see, e.g.
Henncl [21, pp. 45-65], Traub [38, App. B], and Knuth [26, pp. 444-451]).

Fast Algorithms fo r Mampulating Formal Power Series 587

(i0 Suppose that the F F T is used for polynomial mult ipl icat ion, i.e. M(n) =
O(n log n). Then COMP(n) = O((n log n)312). Algori thm 3 1 gives REV(n) =
O((n log n)'~/2), which is the best asymptotic bound known for the reversion problem

It is possible to define the reversion of a power series of the form

t = P(s) = s°(1 + p l s + p2s 2 +), (3.3)

where o E K and o # 0. Indeed, the reversion is of the form

s = V(t) = tl/°(l + vd l/° + v2t 2/° +).

(See, e g Chrystal [12, p. 378].) Since by (3.3), t t/° = s(l + pls + p2s 2 +)l/q, we can
compute vl, v2, . , Vn m the following way:

(1) C o m p u t e p l ~/°), t = 1 n, such that

, { , \1/o

,?oP~li°'s'= t,?oP'S') mod s "+',

where p0 = 1.
(2) Fred the reversion of the series s(1 + p~l/°)s + p~ell°)s 2 +).

It wall be shown in Lemma 6.2 that step 1 can be done in O(M(n)) operations. Hence the
reversion of a power series of the form (3.3) can be done in REV(n) + O(M(n)) operations.
In Section 4 we shall show that M(n) = O(REV(n)) This implies that the n u m b e r of
operations required to find the reversion of the series (3.1) is the same order of magni tude
as that required to find the reversion of the series (3.3).

A Numerical Example. The algorithms for composi t ion and reversion have been
implemented in Fortran, and several numerical tests performed. For example, we computed
the reversion V(s) = - l n (1 - s) of P(s) = 1 - exp (- s) mod s "+~ for various n _< 64. The
correct result is vj = i / j for j ~_ 1 With n = 64, the computed values ~,~ satisfied 1~,~ - vjI
< 7 × 10 -1~ for a l l j _< 64. Computa t ions were performed on a Univac 1108 computer with
a 60-bit f loating-point fraction.

Thus for this example, our reversion algorithm is stable A general investigation of the
stability of our algorithms has not been carried out.

4. Equivalence o f Composition and Reversion

In this section we show that the composi t ion problem ts l inearly equivalent to the reversion
problem in the sense of Borodin [4] and Hopcroft [22], i.e.

REV(n) = O(COMP(n)) and COMP(n) = O(REV(n)).

It is necessary to make some mild regularity assumptions. We assume that C O M P satisfies
Condi t ion A, and that REV saUsfies Condi t ion B. It follows from Theorem 4.1 that both
C O M P and REV satisfy Condi t ions A and B.

LEMMA 4.1. I f U(s) = p2(S)andS(n) = L(uo, u , mod po pn), then M(n) =
O(S(n)).

PROOF. Since 4 P Q = (P + Q)2 _ (e _ Q)2, we have M(n) _< 2S(n) + O(n)
---- O(S(n)). []

LEMMA 4.2. M(n) = O(COMP(n)) .
PROOF. I f Q(s) = s 2 and P(s) = po + P(s) then p2 = Q(p) + 2poP - p~, so S(n) _<

COMP(n) + O(n), and the result follows from Lem m a 4.1. []
LEMMA 4.3. M(n) = O(REV(n)).
PkOOF. Let A(s) = ao + aas + " , B(s) = s + s"+2A(s), and C = B ~- ' . Then it is not

difficult to show that

C(s) = s - s~*2A(s) + s2"+3[sA(s)A'(s) + (n + 2)A2(s)] (mod s3"+').

588 R P BRENT AND H T K U N G

Thus, in REV(3n + 3) + O(n) operations we can compute sA(s)A'(s) + (n + 2)A2(s) mod
s ~+1. Similarly, by defining B(s) = s + sn+3A(s), one can show that

C(s) ffi s - sn+aA(s) + s2~+5[sA(s)A'(s) + (n + 3)A2(s)] (mod s3~+6),

so in REV(3n + 5) + O(n) operations we can compute sA(s)A'(s) + (n + 3)A2(s) mod s n+l.
By subtraction, we get A2(s) mod s n+~. Hence S(n) _< REV(3n + 3) + REV(3n + 5) +
O(n). The result follows from Lemmas 1.2 and 4.1 and the fact that REV satisfies Condition
B. []

THEOREM 4.1. REV(n) = O(COMP(n)) and COMP(n) -- O(REV(n)) .
PROOF. From Theorem 3.1,

REV(2k + 1) _< REV(k) + COMP(2k + 1) + o (m (2 k + 1)).

Similarly, if only 2k coefficients are wanted, we have

REV(2k) _< REV(k) + COMP(2k) + o(m(2k)) .

Hence for any positive integer n, we have

This implies that

REV(n) ffi 0 (~ COMP([2-:nl)) + 0(2 Mff2-:nl)),
where the sums are taken over all integers j = 0 [log hi. Since COMP and M satisfy
Condition A, by Lemma 1.1,

REV(n) = O(COMP(n)) + O(M(n)).

The first half of the theorem follows from Lemma 4.2.
To prove the second half, let P(s) = p~s + p2s 2 + ... and Q(O = qo + qlt + w e show

how to obtain R(s) = Q(P(s)) using reversions.
If pl = p2 p~ = 0, then qo -- R(s) mod s ~+~. Hence, we may suppose that there

exists k _< n such that pk # 0 and that if k > 1 then p~ pk-1 = 0. Let P(s) =
(P(s)/pk) ~/~ and Q(t) -- Q(pkt ~) - qo, so R(s) -- Q(P(s)) + qo and s -- P(s) mod s 2. By
Lemma 6.2 we can compute P(s) mod s ~+' in O(M(n)) operations. By Lemma 4.3, M(n)
is O(REV(n)). Thus, there is no loss of generality in assuming below that pl = 1 and q0 =
0. Define

V(t) = P(-1)(0 mod t2n+2,

V(O = (V(O - tn+XQ(t)V'(O) mod t 2"+2,
P(s) = f:(-')(s) rood s 2n+2.

We claim that

R(s)Pn+'(s) = P(S) - P(s) (mod s2n+2). (4.1)

To prove this, note that

P(V(t)) ffi P(V(O) - e ' (v(t)) t"+lQ(t)V'(t) (mod t2n+2).
But P(V(t)) = t (rood t2n+2), so P'(V(t))V' (O = 1 (mod t 2n+1) and thus

P(V(0) -- t - tn+'Q(t) (mod t2n+2). (4.2)

Now substituting #(s) for t in (4.2), we obtain

P(s) -- PT(s) - :"+1(s)Q(P(s)) (rood s2n+2). (4.3)

Note that P(s) = P(s) (mod :+2) and deg p~+l = n + I. Thus, (4.3) implies that

P(s) = #(s) - P~+I(s)Q(P(s)) (rood s2n+2).

Fast Algorithms f o r Mampulat ing Formal Power Series 589

We have proved (4.1). Hence

s"+lR(s) = (s/P(s))"+a(P(s) - P(s)) (mod s2"+2). (4.4)

We can compute R(s)mod s n+a by the following algorithm:

1 Compute V(t) and V(t) mod t 2n+2
2. Compute P(s) mod s 2"+z
3. Compute (s/P(s)) n+~ mod s 2n+2 by the method of Lemma 6 2
4 Compute R(s) mod s n+~, usmg (44)

Therefore, we have COMP(n) _< 2 REV(2n + 1) + O(M(2n + 1)). Since REV satisfies
Condition B, the second half of the theorem follows from Lemmas 1.2 and 4.3. []

5. Special Functions o f Power Series

Let P, Q ~ ~ , p0 = 0, and R(s) ffi Q(P(s)). In this section we show that L(ro rn mod
pl pn, qo q~) = O(M(n)) i f Q satisfies a suitable ordinary differential equation. It
is an open problem whether a simdar result holds when P rather than Q satisfies a
differential equation.

The results given in this section suffice for most practical applications. We do not
attempt to state the most general results possible, because this would involve us too deeply
in the theory of differential equations.

For completeness, we sketch the result of Brent [8] that log and exp of power series may
be computed with O(M(n)) operaUons.

Evaluation o f log(l + e(s)). I fR(s) = tog(l + e(s)) then R'(s) = e ' (s) / (1 + e(s)). Thus
we can evaluate the first n terms of R'(s) in O(M(n)) operations, and it is easy to deduce
the first n + 1 terms of R(s).

Evaluation ofexp(P(s)) . I fR(s) = exp(P(s)) then log(R(s)) - e(s) ffi 0, and this equation
may be solved by Newton's method. I f

Ro(s) = 1 and R,+l(s) = R,(s) - R,(s)(log(R,(s)) - P(s)),

then R,(s) ffi R(s) mod s 2'. Thus, the number of operations required to find the first n + 1
terms of R(s) is O(M(n) + M([n/2]) + M(rn/4]) + .) and, by Lemma 1.1, this is
O(M(n)) .

Reduction to Dtfferential Equation m R. Suppose the differential equation satisfied by
Q(t) is ca(t, Q(t), Q'(t) Q(m)(t)) = 0. We may substitute t = P(s) and use the chain rule
to obtain a differential equation in R(s) = Q(P(s)). The number of operations required to
make this substitution depends on m and the form of 4,, but in many cases of practical
interest it is only O(M(n)). Some examples are given below. Since m is fixed, any method
gives rl rm-~ in O(1) operations. Thus, we can assume that R(s) satisfies a given
differential equation ~(s, R(s), R'(s) R(m>(s)) = 0, with inlUal conditions R(0) =
ro R(m-1)(O)/(m - 1)! = rm-a, and the problem is to compute rm rn.

5.1 FIRST-ORDER LINEAR EQUATIONS. It is easy to deal with first-order linear equa-
tions of the form R'(s) + A(s)R(s) = B(s), R(O) = to, where A and B are given power series.
The well-known method of mtegratmg factors gives

R (s) = (l / J (s)) (r O + f o S B (u) J (u) d u) ,

where J(s) = exp(fg A(u)du). Since we can compute exponentials of power series and
perform formal integrations, R(s) mod s "+1 can be computed in O(M(n)) operations.

We also need to consider the equation

R'(s) + (als + A(s))R(s) = t t ls + B(s),

where a # 0 and R(0) = ro = f l /a . Using the method of integrating factors agaiu, we obtain

590 R P. BRENT A N D H. T K U N G

{fo } R(s) = O H (s)) s -~ u"[B(u)J(u) + B((J(u) - 1)/u)]du + B/,~ •

If a is a negative integer, we assume that the coefficient of u -1 in the integrand is zero, for
otherwise no power series solution exists. Since

fo ~
s-~ u~ 2 c ,u 'du -- ~ (c , / q + ,~ + 1))s '÷1,

J--O J--O
J~--(a+l)

provided cj = 0 i f j + a + 1 = 0, there is no difficulty in performing the formal integration,
even if a is not an integer.

5.2 FIRST-ORDER NONLINEAR EQUATIONS. It is well known that nonlinear differen-
tial equations can be solved by Newton's method if the corresponding linearized equation
can be solved. See, for example, Rail [34]. We shall not attempt full generality here, but
shall illustrate the idea using the Riccati equation

~ R (s) -= R'(s) + a(s)R(s) - (R(s)) 2 - B(s) = O,

where A(s) and B(s) are given power series, and R(0) = r0.
Since (using Rail's notation) ~¢'(R) = d /ds + (A - 2R)L the Newton iteration is

fo R,+I(s) = R,(s) - (1/Jj(s)) (R,(u))J~(u)du,

where Jj(s) = exp (fg (A(u) - 2Rj(u))du). To study the convergence property of Newton's
method a norm is often used. For our purpose, we use a valuation on ~ . Then the
quadratic convergence of an iteration on ~ means that the number of correct terms doubles
at each iteration. (See Kung and Traub [29] for details.) Using a Newton-Kantorovich
type theorem (see, e.g. Bachman [3, pp. 52-55] and Rail [34, pp. 135-138]), one can easily
show that if the initial approximation Ro(s) = ro + ... r ~ is taken to be an initial segment
of the solution series with I sufficiently large, then Newton's method converges quadrati-
cally. The terms in Ro(s) may be obtained, for example, by equating coefficients. Since I is
fixed, any method gives Ro(s) m O(1) operations. Thus to compute R(s) mod s n, we
compute Rj(s) rood s v+* and only [log2(n - l)] iterations are required. Since
O(M(2 J + l)) operations are needed at t he j th iteration, the number of operations is O(l)
+ o (m (n) + M([n/2]) + .) = O(M(n)) .

The generailzatlon to the Riccati equation in which A(s) is replaced by a / s + A(s) and
B(s) by f l / s + B(s) is straightforward. In fact, the following theorem can be shown by the
above argument.

THEOREM 5.1. I f a f o r m a l power series solution exists f o r the differential equation

R'(s) = F(s, R(s)), R(O) = ro,

where F is a btvanate rational expression, then the f i rs t n terms o f the solution series can be
computed in O(M(n)) operations.

The generalization of Theorem 5.1 to the case where Fitself is a bivariate infinite power
series or to the case of vector differential equations is straightforward. For example,
consider the following differential equation:

R'(s) -- F(R(s)), R(0) = 0, (5.1)

where F is a umvariate power series. To compute the first n terms in R we need only the
first n terms in F. When we solve (5.1) by Newton's method, the main cost of each iterauon
is due to composition. Hence the first n terms in R can be obtamed in O(COMP(n))
operations. It is instructive to note that if V is the reversion of the P defined by (3.1) then
by the chain rule P'(V(s)) V'(s) = 1. Thus V is the power series solution of (5.1) with

Fast A lgorithms f o r Mampulat ing Formal Power Series 591

F = I /P ' . This gives another proof that REV(n) = O(COMP(n)). By the result of Section
4, we have therefore shown that the problem of solving differential equation (5.1), the
composition problem, and the reversion problem are all equivalent.

5.3 SECOND-ORDER LINEAR EQUATIONS. Suppose R"(s) + A(s)R'(s) + B(s)R(s) =
C(s), where A(s), B(s), and C(s) are given power series, and R(0) = ro, R'(0) = rl. The
well-known method of factorization (Burkill [6]) reduces this second-order problem to
three first-order problems, one of which is nonlinear. If 2 is the differentiation operator,
we want power series S(s) and T(s) such that (2 + S) (2 + T) R = 2 2 R + A 2 R + BR, i.e.
S + T = A and T ' + S T = B, which gives T' + A T - T 2 - B = 0. This is just the Riccati
equation discussed above. The initial condition T(0) = to may be chosen arbitrarily. Once
T and S = A - T are known, we may solve the first-order linear equations U' +
S U = C, U(O) = rl + toro and R" + TR = U, R(O) = ro to obtain U = (2 + T) R and then
R. Hence R(s) rood s "+1 can be computed in O(M(n)) operations.

The generalization in which A(s) is replaced by a / s + A(s), etc., is similar, except that
to = / 3 / a is chosen so that T(s) is a power series.

By repeated application of linearization (i.e. Newton's method) and factofization, the
solution of a differential equation of arbitrary order can be reduced to the solution of first-
order linear equations. In practice second-order equations are the most common, and we
give two examples below.

Hypergeometric Functions o f Power Series. As our first example we consider the
computation of R(s) = F(a, b; c; P(s)), where F is the hypergeometric function

o o

F(a, b; c; z) = Y, ((a),(b)J(c)~). z ' / j ! .
3=0

(Here (a)~ = r (a + j) / r (a) , etc.) By suitable choice of a, b, and c, many elementary
functions can be wntten in this form; see Abramowitz and Stegun [1]. Now w = F(a, b; c;
z) satisfies the hypergeometric differential equation

z(l - z)d2w/dz 2 + [c - (a + b + l) z]dw/dz - abw = O,

so substituting z = P(s), w = R(s) and using the chain rule gives

R" + ([c - (a + b + I)P]P ' / [P(I - P)] - P " / P ' } R ' - (ab(P')2/(P(l - P)))R = O,

with initial conditions R(0) = 1 and R'(O) = abP'(O)/c. Thus, we have a second-order
linear equation whose power series solution may be obtained as described above, and to
compute R(s) rood s "+1 requires only O(M(n)) operations. Generalized hypergeometric
functions of power series may also be computed in O(M(n)) operations, using the
generalized hypergeometric equation (Henrici [21]) and an obvious generalization of our
method.

The algorithm for hypergeometric functions over the real field has been implemented in
Fortran. Numerical tests indicate that the effect of rounding errors is usually no worse,
and often better, than for the obvious O(n 3) algorithm. However, a rigorous analysis of the
numerical properties of our algonthms has not yet been attempted. Special cases which
have been tested numerically include F(I, 1; 2; 1 - e 8) = s / (e s - 1), F (- a , a; V2;
sin2(x/s)) = cos(2ax/s), and F(V2, ~/2; %; s 2) = arcsin(s)/s.

Bessel Functions o f Power Series. Our second example is the computation of R(s) =
J,(P(s)), where the Bessel function w = L(z) = (z/2)" Y,7-0 (-~/4 z2)k/(k!(v + k)!) satisfies
the differential equation

dZw/dz 2 + (l / z) d w / d z + (1 - v2/z2)w -- O.

We may substitute w = R(s) and z = P(s) to obtain a second-order equation for R, and
proceed as above. A slight generalization is necessary to deal with the v2/z2 term, but this
can be avoided by making the change of variables w = z ' W , which gives a differential
equation

592 R. P. BRENT A N D H T. K U N G

d 2 W / d z 2 + ((2v + l) / z) d W / d z + W = 0

of the form discussed above.

6. Evaluation o f Truncated Reversion at a Point

Let P E : , p0 = 0, and V -- Pt-~). In this section we show that L(vn rood p~ p~) =
O(M(n)) and L(Vn(a) mod a, p l p,~) = O(M(n)) , where V~(0 is the "truncated reversion"
ofe(s) , i.e. V~(t) -- vd + v2t 2 + .. + vnt ~.

We need some definitions. The quotient field o f : is isomorphic to the field .~ of formal
Laurent series over K, i.e. series ~7._® ajt ~ where a~ E K and only f'mitely many aj are
nonzero for negative j. I f A ~ ..~ we define the "residue" of A to be rest[A(0] = a-~.

LEMMA 6.1. rest[A(t)] =- res t [tA ' (t)] .
LEMMA 6.2 (Brent [8]). Let P(s) = p k s k + pk+lSk+l+ " • wi thpk # O f o r some k >_ 0 be

given. Le t R(s) = P°(s) f o r some number e # O. I f p~ is given, then the f i rs t n terms in R(s)
can be computed in O(M(n)) operations.

PROOF. Defme #(s) by P(s) =pksk[l + #(S)]. Then

R(s) = pis~[l + P(s)] ° = l~S °~ exp{o, log[I + #(s)]}.

The lemma follows from the preliminary results of Section 5. []
LEMMA 6.3. V~ = (I/n) res,[P"n(s)] = res,[sP'(s)/Pn+1(s)].
PROOF. The first equation follows from the Lagrange-Burmann Theorem (see, e.g.

Henrici [21] and Knuth [26]) and the second equation follows from Lemma 6.1. []
THEOREM 6.1. L(v~ modpl p~) -- O(M(n)).
PROOF. Note that res,[P-n(s)] is the coefficient of s n-~ in [s/P(s)] n. Thus, the result

follows from Lemmas 6.2 and 6.3. []
LEMMA 6.4.

V~(a) = res,[(an+lsP/(s))/(en+t(s)(a - P(s)))].

PROOF. From Lemma 6.3 and the definition of V~ we have

res'L-~-l-se'(s) :-~] Vo<a> = _ res,tsP'<s>/ P'+'<s)la' = <alP<s>>'
J=l

[-sp'(s)a(a" -

= tess L P<s)) .I"

Since ress[sP'(s)a/(P(s)(a - P(s)))] = 0, the result follows. []
THEOREM 6.2. L(Vn(a)mod a, px pn) = O(M(n)) .
PROOF. If a = 0 then Vn(a) = O. I f a # 0 then, from Lemma 6.4, Vn(a) is the coefficient

of s ~-1 in an+lP'(s)/((P(s)/s)~+l(a - P(s))). Thus, the result follows from Lemma 6.2. []
Application to Root Finding. Suppose K is the real or complex field, f : D C K ~ K is a

sufficiently smooth function with a simple zero ~ in the interior of D, and x0 is a sufficiently
good approximation to ~. The direct and inverse polynomial interpolation methods (Traub
[38]) may be used to obtain a better approximation xl = ~ + O([xo - ~r+t). Both methods
depend on the evaluation o f f (x o) , f ' (x o) f l~)(xo). For the direct method, xl is chosen
to be a sufficiently good approximation to the appropriate zero of the Taylor polynomial
~ - o (x - xo)f tJ~(xo)/ f i . If this zero is found by Newton's method with x0 as the starting
approximation, then [log2(n + 1)] iterations are required so the combinatory cost (Kung
and Traub [28]) or "overhead" is O(n log n). Taqan has shown that this can be reduced to O(n).

I f P(s) =f (x0 + s) - f (x o) = ~=1 s~f~J~(Xo)/j!, and V = pC-l) is the reversion of P, then
P(~ - xo) = - f (xo) , so ~ = xo + V(- f (xo)) . The inverse polynomial interpolation method
avoids the need to fred the zero of a polynomial by approximating V rather than P. In fact,
the inverse method takes x l = Xo + Vn(- f (xo)) , where Vn is the truncated reversion of P
(or, equivalently, of Pn(s) -- ~ - 1 sf~:~(Xo)/j!). From Theorem 6.2, the combinatory cost is

Fast A lgorlthms for Manipulating Formal Power Series 5 9 3

O(M(n)) = O(n log n). Thus, the combinatory cost of both the direct and inverse methods
is O(n log n). This result is main ly of theoretical interest, for in practice n is usual ly small.

Applicatwn to Queueing Theory. By a result of Brockwell [111 and F inch [15, 16] it can
be shown that for a G1/M/1 queue which is inl tmlly empty, the probabi l i ty that the nth
arrival finds more t h a n j customers in the queue is the coefficient of s n-~-~ in the generat ing
funct ion e'(s)/((P(s)/s)~+t(l - P(s))) for some given power series P(s). Hence the method
used in the proof of Theorem 6.2 can be applied with small changes for comput ing the
probabilit ies. The details of this result will be given in a separate paper.

Evaluation of One Coefficient in Composition. Let P, Q E ~ , p o = 0, and R(s) =
Q(P~-'(s)). The following theorem is similar to Theorem 6.1.

THEOREM 6.3. L(r~ modpt p~, qo q~) = O(M(n)).
PROOF. Since r0 = q0, we may suppose n > 0. F r o m the Lagrange-Bi i rmann theorem,

r~ = res~[a'(s)/e~(s)]/n = coefficient of s n-1 i l l Q'(s)(s/P(s))~/n,

so the result follows from L e mma 6.2. El
It is an open problem whether Theorem 6.3 holds if R(s) = Q(P(s)) instead of

Q(e~-'(s)).
A Numerical Example. Taking P(s) = 1 - exp(-s) , we evaluated the t runcated reversion

V~ at a for various n and a by the algorithm establishing Theorem 6.2, using a Univac
1108 computer with a 60-bit f loat ing-point fraction. The effect o f rounding errors increased
as n increased, bu t was not excessive for small values of a. (In the root-f inding applicat ion
a should be small.) It seems that the growth in rounding error is due to the i l l -condit ioning
of the problem. Some typical results are given in Table I, where Vn(a) are the computed
values.

TABLE I
n a I ~n(a) -- Vn(a)l n a I ~'n(a) - Vn(a)l
16 0 1 3 X 10 -18 32 02 8 × 10 -la
16 0 2 1 X 10 -16 32 0 4 5 X 10 -11

16 04 l X 10 -14 32 08 8 X 10 -a
16 0.8 5 X 10 -11 64 0 1 4 X 10 -15
16 1 6 6 X 10 -7 64 0 2 5 X 10 -12
32 0 1 9 X 10 -17 64 04 2 X 10 -a

7. Multivariate Cases

We have so far dealt with power series in one variable. The results o f previous sections in
principle can be applied and generalized to power series in several variables, provided that
appropriate care is taken to handle various singularity problems associated with mult ivari-
ate power series. In this section we state some of our results on the composi t ion problem
for bivariate power series. For more complete t reatment of the mult ivariate case, the reader
is referred to Brent and K u n g [10].

We first extend our mod s n+l notat ion to bivariate power series. Let Q(s, t) =
~,j-o q,,~s'# be a bivariate power series. We define the degree of the term q~,~s~f to be
i + j. Q(s, t) rood (s + t) n÷t denotes the finite series consisting of all terms of Q(s, 0 of
degree less than n + 1. To compute Q(s, t) mod (s + 0 n+~ means to compute the q,,j for all
t, j such that i + j _< n.

THEOREM 7.1. Given a bivariate power series Q and two univariate series P1, P2 with no
constant terms, R(s) = Q(Pi(s), Pz(s)) rood s ~÷1 can be computed in O(n2log n) operations.

THEOREM 7.2. Given a univartate power series Q and a btvartate series P wtth no constant
term, R(s, t) = Q(P(s, t)) mod (s + t) ~÷1 can be computed in O(n 2 Slog n) operations.

THEOREM 7.3. Given three bivariate power series Pi, P2, and Q, where Pi and P2 have
no constant terms, R(s, t) = Q(ex(s, t), Pz(s, t)) mod (s + t) ~+1 can be computed in O(n 251ogl 5n)
operations.

594 R P. BRENT AND H T KUNG

Note that the classical bounds for the composition problems considered in Theorems
7.1, 7.2, and 7.3 are O(n4), O(nS), and O(n6), respectively (or O(n31og n), O(nqog n), and
O(n41og n), respectively, if the FFT polynomial multiplication is used).

ACKNOWLEDGMENT. We wish to thank Professors B.D. Craven and J.F. Traub for their
comments, and Professor P. Henrici for simplifying the proof of Lemma 6.4.

REFERENCES

1. ABRAMOWITZ, M., AND STEGUN, | A Handbook of Mathematical Functions. Nat. Bur Stand., Washington,
D C., 1964, chap 15

2. AHO, A V, HOPCROFT, J E , AND ULLMAN, J.D The Design andAnalys:s of ComputerAlgonthms Addison-
Wesley, Reading, Mass, 1974.

3 BACHMAN, (3 Introduction to P-Adic Numbers and Valuation Theory Academic Press, New York, 1964
4 BORODIN, A. On the number of anthmetlcs to compute certain funcUons--Clrca May 1973. In Complexity

of Sequential and Parallel Numerical Algor:thms, J F Traub, Ed, Academtc Press, New York, 1973, pp
149-180.

5 BORODIN, A, AND MUNRO, I The Computational Complexity of Algebraic and Numeric Problems American
Elsevier, New York, 1975

6 BURKILL, J C The Theory of Ordinary Dtfferenual Equations Ohver and Boyd, London, 1962, Sec. 9.
7. BRENT, R P The complexity of multiple-precision anthmeuc. In Complexity of Computational Problem

Solving, R S Anderssen & R P Brent, Eds, U of Queensland Press, Bnsbane, Austraha, 1975, pp. 126-165
8 BRENT, R P Multtple-preclslonzero-fmdmgmethodsandthecomplexRyofelementaryfuncUonevaluatton

In Analytic Computational Complexity, J F Tranb, Ed., Academic Press, New York, 1975, pp. 151-176
9. BRENT, R P , AND KtJNG, H T. O((n log n) 3/2) algonthras for composmon and reversion of power senes

(extended abstract) In Analytw Computational Complexity, J F. Traub, Ed, Academic Press, New York,
1976, pp 217-225

10. BRENT, R P, AND KUNG, H.T. Fast algorithms for composiUon and reversion of multwanate power senes
Proc. Conf. Theoret Comptr Sol, U. of Waterloo, Waterloo, Ont., Canada, Aug 1977, pp 149-158

11 BROCKWELL, PJ The transtent behaviour of the queuemg system G1/M/I J Austral Math Soc 3 (1963),
249-256

12 CHRYSTAL, G. Textbook of Algebra, Part I I Chelsea, New York, 1964
13 FATEMAN, R J Polynomml multiplication, powers and asymptotic analysis Some comments SIAM J

Comping 3 (1974), 196-213
14 FERGUSON, H R P, NIELSEN, D E, AND COOK, G A partition formula for the integer coefficients of the

theta function home Math Comput 29 (1975), 851-855
15 FtNCH, P D The single server queuemg system with non-recurrent input-process and Erlang service time J

Austral Math Soc 3 (1963), 220-236
16 FINCH, P D On partml sums of Lagrange's series with application to theory of queues J Austral Math Soc

3 (1963), 488--490
17 FISCHER, M J , AND STOCKMEYER, L J Fast on-hne integer multiplication J Comptr Syst Sci 9 (1974).

317-331
18 GILBERT, E N Enumeration of labelled graphs Canadtan J Math 8 (1956), 405-411
19 HEtNDEL, L E Computation of powers of multivariate polynomials over the integers J Comptr Syst Sc:

6 (1971), 1-8
20 HENRICI, P Automatic computation with power series J ACM 3, 1 (Jan 1956), 10-15
24 HENRtC1, P Apphed and Computational Complex Analysis, Vol 1 Wdey-lntersclence, New York, 1974, chap

1.
22 HOPCROFT, J E Complexity of computer computattons Information Processing 74, North-Holland Pub

Co, Amsterdam, 1974, pp 620-626.
23 HOROWITZ, E On the substitution of polynomial forms Proc ACM 1973 Annual Conf, CR No 28686,

1973, pp 153-158
24 HOROWtTZ, E The efficient calculation of powers of polynomials J Comptr Syst Sc: 7(1973), 469-480
25 JACKSON, D M, AND REiLLY, J W The enumeration of homeomorphically irreducible labelled graphs J

Combinatorial Theory, Ser B, 19 (1975), 272-286
26 KNOTH, D E The Art of Computer Programming, Vol 2 Semmumerlcal Algorithms Addison-Wesley,

Reading, Mass, 1969, Sec 4 7
27 KUNG, H T On computing reciprocals of power series Numer Math 22 (1974), 341-348
28 KUNG, H.T, AND TRAUB, J F Computational complexity of one-point and multlpomt iteration. In Com-

plextty of Real Computation, R M Karp, Ed, SIAM-AMS Proc 7, Amer Math Soc, Providence, R I , 1974,
pp 149-160

29 KUNG, H T . AND TRAUB, J F All algebraic functions can be computed fast J ACM 25, 2 (April 1978),
245-260

Fast Algorithms for Manipulating Formal Power Series 595

30 LEVY, H , AND LESSMAN, F Fmtte Difference Equations Pitman and Sons, London, 1959.
3l NtVEN, 1 Formal power series Amer Math Monthly 76 (1969), 871-889.
32 NORMAN, A C Computing with formal power series ACM Trans Math Software 1, 4 (Dec. 1975), 346-356
33 PATERSON, MS,ANDSTOCKMEYER, L J On the number of nonscalar multlphcaUons necessary to evaluate

polynomials SIAM J Comping 2(1973), 60-66
34 RALL, L B Computational Solution of Nonhnear Operator Equations Wiley, New York, 1969
35 RIORDAN, J An Introduction to Combmatonal Analysts Wdey, New York, 1958
36 SIEVEKING, M An algorithm for division of power series Computing 10 (1972), 153-156
37 STRASSEN, V Gaussmn ehmmaUon is not optimal Numer Math 13 (1969), 354-356
38 TRAUB, J F lterattve Methods for the Solution of Equations Prentice-Hall, Englewood Cliffs, N J , 1964,

chap 5

RECEIVED FEBRUARY 1976, REVISED OCTOBER 1977

Journal of the Association for Computmg Machinery. Vol 25. No 4, October 1978

